Empirical Relations for Optical Attenuation Prediction from Liquid Water Content of Fog
نویسندگان
چکیده
Simultaneous measurements of the liquid water content (LWC) and optical attenuation have been analyzed to predict optical attenuation caused by fog particles. Attenuation has been measured at two different wavelengths, 830 nm and 1550 nm, across co-located links. Five months measured data have been processed to assess power-law empirical models, which estimate optical attenuation from the LWC. The proposed models are compared with other published models and are demonstrated to perform sufficiently well to predict optical attenuation if the LWC values are available.
منابع مشابه
PDF Estimation and Liquid Water Content Based Attenuation Modeling for Fog in Terrestrial FSO Links
Terrestrial Free-space optical communication (FSO) links have yet to achieve a mass market success due to the ever elusive 99.999% availability requirement. The terrestrial FSO links are heavily affected by atmospheric fog. To design systems which can achieve high availability and reliability in the presence of fog, accurate and better models of fog attenuation need to be developed. The current...
متن کاملPrediction of drop size distribution parameters for optical wireless communications through moderate continental fog
Wireless Optical Communication Links (OCL), or Free Space Optics (FSO) links involving optical ground stations (OGS) are highly influenced by the earth atmosphere due to the interaction of the optical wave with particles of different size and shape. Fog, clouds, rain and snow cause significant signal attenuation thus limiting the performance of OCL. In this paper, we consider the behavior of OC...
متن کاملAtmospheric Attenuation due to Humidity
Humidity remains in the atmosphere even on bright days. Water of all three states can be found naturally in the atmosphere: liquid (rain, fog, and clouds), solid (snowflakes, ice crystals), and gas (water vapour). Water in any state is an obstacle in the link of the electromagnetic wave. When the wave passes through the water particles, a part of its energy is absorbed and a part is scattered. ...
متن کاملCharacterization of Fog and Snow Attenuations for Free-Space Optical Propagation
Free Space Optics (FSO) is now a well established access technology, better known for its robustness in transmitting large data volumes in an energy efficient manner. However the BER performance of a FSO ground-link is adversely affected by cloud coverage, harsh weather conditions, and atmospheric turbulence. Fog, clouds and dry snow play a detrimental role by attenuating optical energy transmi...
متن کاملInfrared extinction spectra of some common liquid aerosols.
Infrared extinction spectra in the 3-5-microm and 7-13-microm atmospheric window regions have been obtained for smokes of petroleum oil, sulfuric acid, and phosphoric acid of varying droplet concentration and for water fogs. Spectra were also obtained at 0.36-2.35microm for petroleum oil and sulfuric acid smokes. Experimental results were compared, for sulfuric acid and water aerosols, to calcu...
متن کامل